Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Orthop Surg Res ; 16(1): 53, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446219

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy and safety of using high-dose intravenous tranexamic acid (TXA) to reduce blood loss in idiopathic scoliosis surgery. METHODS: This study was a meta-analysis, which consisted of retrospective cohort studies (RCSs) and randomized control trials (RCTs) found by searching electronic databases, namely PubMed, Web of Science, The Cochrane Central Register of Controlled Trials (CENTRAL), and the Google Scholar Database, dating from 1960 to 2019. The points of interest included total blood loss, a need for transfusion and transfusion criteria, surgery time, and the evidence of intraoperative and postoperative complications, such as seizures or thromboembolic events. The weighted mean differences (WMD) and 95% confidence interval (CI) of blood loss in the TXA intervention group compared to the control or placebo group were extracted and combined using the random effects model. RESULTS: In this meta-analysis, there was a total of three RCSs and two RCTs, which involved 334 patients. The results showed that blood loss is significantly reduced, with a weighted mean difference in the TXA group (WMD = - 525.14, P = 0.0000, CI ranged from - 839.83, - 210.44, I2 = 82%). Heterogeneity was assessed using the random effects model. CONCLUSIONS: A high dose of intravenous TXA reduced blood loss during adolescent idiopathic scoliosis surgery and did not lead to any significant thromboembolic event. Therefore, a high dose appears to be effective and safe for adolescent idiopathic scoliosis surgery. However, more high-quality research based on larger randomized controlled trials is still needed.


Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Escoliose/cirurgia , Fusão Vertebral , Ácido Tranexâmico/administração & dosagem , Adolescente , Feminino , Humanos , Infusões Intravenosas , Complicações Intraoperatórias/etiologia , Masculino , Complicações Pós-Operatórias/etiologia , Pulsoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Segurança , Convulsões/etiologia , Fusão Vertebral/efeitos adversos , Tromboembolia/etiologia , Fatores de Tempo , Ácido Tranexâmico/efeitos adversos
2.
Braz J Med Biol Res ; 51(6): e7061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694508

RESUMO

Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0-12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.


Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Diterpenos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Astrócitos/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo , Transfecção
3.
Braz. j. med. biol. res ; 51(6): e7061, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889105

RESUMO

Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0-12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.


Assuntos
Animais , Camundongos , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Diterpenos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Astrócitos/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...